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Abstract— Accurate State of Health (SoH) estimation is 

crucial for reusing retired lithium-ion batteries safely. Existing 

methods lack robustness against real-world sensor noise and 

disturbances. We propose a noise-augmented training method 

with feature clipping to improve prediction reliability under 

measurement imperfections. Our approach enhances model 

resilience in industrial environments, where noise and calibration 

drift degrade performance. Evaluations show Random Forest 

Regression outperforms other models, achieving a 25% lower 

RMSE (0.85% vs. 1.14%). This demonstrates its effectiveness for 

practical second-life battery applications, balancing speed and 

accuracy. The method’s noise-resistant design ensures reliable 

SoH estimation, supporting sustainable battery reuse in energy 

storage systems. 
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I. INTRODUCTION  

Lithium-ion batteries have become a cornerstone of today’s 
energy landscape, powering everything from electric vehicles 
(EVs) and portable electronics to large-scale renewable energy 
storage systems. Their combination of high energy density, 
long cycle life, and low self-discharge rate has made them the 
preferred choice for both mobile and stationary applications [1]. 
With the rapid growth in demand for EVs and clean energy 
technologies, the global lithium-ion battery market is projected 
to surpass $180 billion by 2030, driven largely by their adoption 
in transportation and grid storage [2]. At the same time, the 
increasing number of EV batteries reaching the end of their 
primary service life is creating a strong incentive for second-
life applications in stationary energy storage, offering both 
environmental and economic benefits [3]. This shift supports a 
more sustainable energy ecosystem but also raises new 
challenges in battery assessment, safety, and lifecycle 
management. 

Beyond transportation and consumer devices, lithium-ion 
batteries are becoming essential for building reliable and 
flexible energy systems. They make it easier to integrate 
renewable sources like wind and solar into the grid, support 
backup power solutions, and drive innovations such as 
microgrids and smart homes [4]. Advances in battery 
chemistry, cooling, and recycling are improving their lifespan 
and sustainability [5], while their adaptability has expanded 
their use to fields like aerospace, healthcare, and manufacturing 
[6]. These trends highlight that the future of clean energy and 
modern infrastructure will remain closely tied to the continued 
development and deployment of lithium-ion battery 
technology. 

Reliable estimation of a battery's State of Health (SoH) is 
critical for both primary and second-life applications, directly 
influencing safety, performance, and lifecycle management. 
SoH reflects the degradation level of a battery and is typically 
defined as the ratio of the current capacity to the nominal 
capacity. In electric vehicles and grid storage systems, incorrect 
SoH prediction can lead to premature replacement, 
underutilization, or, worse, catastrophic failures due to 
undetected capacity loss or internal damage [7], [8]. Moreover, 
real-time or near-real-time SoH monitoring is essential for 
effective battery management systems (BMS), enabling smart 
decision-making in charge/discharge control, thermal 
regulation, and remaining useful life estimation [9], [10]. 

While traditional approaches such as incremental capacity 
(IC) analysis, differential voltage analysis, and equivalent-
circuit modeling remain prevalent [11], they often depend on 
precise laboratory conditions and may not generalize well to 
diverse real-world aging patterns. A recent onboard health 
estimation framework, for example, employs Electrochemical 
Impedance Spectroscopy (EIS) deconvolved via the 
Distribution of Relaxation Times (DRT) as input to an LSTM-
based model, achieving robust SoH predictions across varying 
degradation ages and operating conditions with an average 



RMSPE of approximately 1.69 percent [12]. Such methods 
provide valuable insights but still face limitations, including 
high computational cost, sensitivity to measurement noise, and 
dependence on internal battery parameters that are rarely 
available in practical systems. In contrast, data-driven 
approaches based on machine learning and impedance 
measurements—particularly EIS—have emerged as powerful 
tools for SoH estimation, offering the potential for non-
invasive, accurate, and fast diagnostics under diverse 
conditions [13].  improving their robustness, generalizability, 
and seamless integration into real-world battery systems 
remains an ongoing challenge.  

Recent research has increasingly focused on hybrid 
strategies that combine physics-based insights with data-driven 
algorithms to overcome the limitations of traditional SoH 
estimation methods. These methods combine the clarity of 
electrochemical models with the flexibility of machine 
learning, allowing accurate predictions even when the data is 
incomplete or affected by noise [14], [15]. Furthermore, 
advancements in sensor technology and embedded computing 
have made it possible to deploy these methods directly within 
battery management systems, reducing reliance on laboratory-
grade equipment [16]. Emerging trends, such as federated 
learning and cloud-connected diagnostics, also promise to 
enhance model generalization by pooling data from large, 
diverse battery fleets without compromising privacy [17]. 
Together, these innovations are paving the way for SoH 
estimation techniques that are not only more accurate but also 
scalable and practical for real-world applications. 

In response to the ongoing need for accurate and scalable 
SoH estimation, this study investigates the effectiveness of 
various machine learning models in predicting battery health 
based on EIS features. A publicly available dataset—originally 
introduced by Marco et al. [18]—was used, containing 
impedance data collected under varying temperatures and state-
of-charge conditions. From this dataset, seven key frequency-
domain features were extracted to represent the shape and 
dynamics of the EIS spectrum. Three machine learning models 
—XGBoost, Random Forest, and GPR— were trained and 
evaluated using consistent cross-validation settings. Among all 
models, the Random Forest Regressor delivered the most 
accurate predictions, with a notable reduction in RMSE 
compared to the Gaussian Process Regression (GPR) baseline 
reported in [19].  

Building on this result, we turned our attention to making 
the model reliable under conditions that closely resemble real-
world battery operation. To achieve this, we developed a 
training approach that combines the predictive power of seven 
EIS-derived features with targeted noise scenarios—Gaussian, 
uniform, and calibration bias—introduced during learning. 

While many previous EIS-based SoH estimation methods 
are tested under clean laboratory conditions with minimal 
measurement noise, real-world applications face electrical 
interference, environmental fluctuations, and sensor drift that 
can significantly reduce accuracy. Our noise-augmented 
training, paired with a simple feature-clipping step, enables the 
model to remain accurate despite such imperfections. By 
addressing robustness alongside prediction performance, this 

approach narrows the gap between controlled lab studies and 
the noisy, variable conditions of practical second-life battery 
use, offering a dependable and deployment-ready solution for 
health monitoring. 

The remainder of this paper is organized as follows. Section 
II presents the modeling framework and methodology adopted 
in this study. Section III describes the SoH estimation process 
using three different machine learning approaches. Section IV 
discusses the simulation results, including performance 
evaluation under noise-perturbed conditions. Finally, Section V 
summarizes the conclusions and outlines potential directions 
for future work. 

II. MODELING AND METHODOLOGY 

We used a publicly available dataset originally described by 
Marco et al. [18]. The dataset contains Electrochemical 
Impedance Spectroscopy (EIS) measurements collected from 
second-life lithium-ion cells under varying temperatures and 
states of charge (SoC). In total, the dataset comprises 375 EIS 
test cases measured across multiple SoC and temperature 
combinations. Measurements were taken at SoC levels of 5, 20, 
50, 70, and 95%, and across a temperature range of 15, 25, and 
35 ℃. Seven specific features were extracted from each EIS 
test in order to predict SoH. These features were selected based 
on Pearson correlation analysis, which demonstrated a 
significant numerical relationship between each feature and the 
battery's state of health (SoH). These features correspond to 
specific geometrical points on the Nyquist plot that reflect the 
dynamic behavior of the battery under test. As shown in Fig. 1. 
the selected points include: 

– the highest frequency point (F₁), which marks the starting 
point of the EIS curve; 
– the minimum real part (F₂), typically corresponding to the 
end of the semicircle; 
– the lowest frequency point (F₃), indicating the tail of the 
impedance spectrum; 
– the zero-crossing point (F₄), where the imaginary 
component becomes zero; 
– the imaginary peak (F₅), representing the maximum 
capacitive response; 
– and two local minima, (F₆) and (F₇), found between (F₄, 
F₅) and (F₅, F₃), which characterize curve inflections in the 
low- and mid-frequency ranges. 

    These geometrically derived EIS features offer a compact 
yet informative representation of the impedance response, 
capturing its shape without relying on explicit physical models. 
In addition to these seven spectral features, temperature and 
state of charge (SoC) were incorporated as supplementary 
inputs, resulting in a total of nine variables for the machine 
learning models. This approach enables dimensionality 
reduction while preserving key diagnostic information, 
facilitating robust and efficient SoH estimation across varying 
condition. 



 
Figure 1.    Nyquist Plot with Feature Points F1–F7 

      

III. ROBUST SOH ESTIMATION 

Three machine learning models were applied in this work to 
develop and evaluate the proposed state-of-health estimation: 

A. GPR 

 In the study by Marco et al. [19], Gaussian Process 
Regression (GPR) was adopted as the primary modeling 
approach for battery State of Health (SoH) estimation using 
features extracted from EIS measurements. GPR is a non-
parametric, kernel-based method that models the relationship 
between inputs and outputs by defining a prior over functions 
and updating it based on observed data. This probabilistic 
nature allows GPR to not only make point predictions but also 
quantify uncertainty, which is particularly valuable in 
applications where measurement noise and operational 
variability are significant. In Marco’s work, the training process 
involved a combination of spectral feature engineering and 
hyperparameter optimization to achieve a robust mapping 
between the impedance-derived inputs and the battery health 
metric. The model’s kernel hyperparameters—such as length-
scale, variance, and noise level—were optimized through a 
cross-validation procedure to minimize prediction error. 

B. XGBoost 

XGBoost (Extreme Gradient Boosting) is a machine 
learning algorithm that builds many small decision trees and 
combines their results to make more accurate predictions. Each 
new tree is created to correct the mistakes made by the previous 
ones. The method includes built-in features like regularization 
to control model complexity, efficient parallel processing, and 
the ability to handle missing data. These capabilities make it 
flexible for working with datasets that have nonlinear 
relationships or moderate levels of noise.  

In this work, we configured XGBoost by adjusting a few 
key parameters. We set the number of trees, the maximum 
depth for each tree, and the learning rate so the model would 
improve steadily without overfitting. Regularization 
parameters were tuned to prevent the model from memorizing 
noise, and we used random subsampling of both data and 

features for each tree to make the model more robust. Training 
was monitored with a validation set, and stopped early when 
performance stopped improving. These settings were refined 
through several trial-and-error runs until we found a balance 
between accuracy and training speed. 

C. Random Forest 

 Random Forest (RF) is an ensemble learning method that 
averages the predictions of many decision trees trained on 
bootstrap samples of the data. At each split, trees consider only 
a random subset of features, which decorrelates the trees and 
reduces variance. This design makes RF effective at capturing 
nonlinear relationships while remaining relatively stable in the 
presence of noisy or partially redundant inputs—properties that 
align well with impedance-derived feature spaces. 

In this study, we flattened and transformed the dataset 
introduced by Marco et al. [18] into a structured tabular format. 
Each sample consists of seven impedance-derived features (real 
and imaginary components at characteristic frequencies), along 
with the state of charge (SoC), temperature, and the 
corresponding State of Health (SoH). In total, the dataset 
comprises 375 samples. Prior to model training, raw 
measurements were smoothed using a centered rolling mean 
(window = 21) to reduce high-frequency fluctuations, and any 
remaining missing values were imputed using backward and 
forward filling. The processed dataset was then randomly 
divided into training and testing subsets using an 80/20 split, 
resulting in 300 training samples and 75 test samples.  

 To find a balanced configuration, we tested multiple 
variations of the model’s settings—such as the number of trees 
and the depth of each tree—and selected the combination that 
provided the most consistent performance across different parts 
of the dataset. We also measured how quickly the model could 
produce predictions, ensuring it would be practical for real-time 
applications. 

After training, we assessed the model using standard 
accuracy metrics and visual inspections. The results showed 
that its predictions followed the actual SoH values very closely, 
with small and randomly distributed errors. We also looked at 
which features the model considered most important, providing 
insights into the aspects of EIS data that have the greatest 
influence on battery health estimation. Finally, the trained 
model and its preprocessing steps were saved, making it ready 
for deployment or further testing in real-world battery 
management systems. 

Each model was trained using 10-fold cross-validation for 
consistent and unbiased comparison. The dataset was randomly 
partitioned into ten equally sized subsets. In each iteration, one 
subset was held out as the validation set, while the remaining 
nine subsets were used for training. 

IV. EXPERIMENTAL RESULTS 

Model performance was evaluated using four standard 
regression metrics: Root Mean Square Error (RMSE), Mean 
Square Error (MSE), Mean Absolute Error (MAE), and the 
coefficient of determination (R²). RMSE was primarily used as 
the benchmark metric for ranking models, given its sensitivity 
to larger errors. 



The implementation was carried out primarily in Python 
using the scikit-learn and XGBoost libraries. All experiments 
were executed on a standard personal computer without the use 
of GPU acceleration. 

A. Quantitative Comparison 

Table I presents a comparative overview of the evaluated 
models in terms of RMSE, MSE, MAE and R². The Random 
Forest model demonstrated the best overall performance, 
achieving an RMSE of 0.85%, significantly outperforming the 
baseline Gaussian Process Regression (GPR), which recorded 
an RMSE of 1.14%.  

 

Table I. Comaprison of ML Models for SoH Prediction 

 

B. Execution Time Analysis 

Training the Random Forest model with the selected 
hyperparameters took approximately 27 seconds, which is 
acceptable given the dataset size and cross-validation settings. 
This was measured on a workstation with Intel 8-core CPU 
(Intel64 Family 6 Model 142), 7.8 GB RAM, Windows 11, 
running Python 3.13.1 with scikit-learn 1.6.1. Once trained, the 
model produced predictions almost instantly, with an average 
inference time of around 7.5 milliseconds enabling near real-
time prediction capability. These results suggest that Random 
Forest achieves high predictive performance and can be used 
effectively even on systems with limited computing power. 

C. Visual Evaluation 

To visually evaluate the Random Forest model’s predictive 
behavior, three plots are provided. The first plot displays the 
measured and predicted SoH values across all test observations, 
showing that the predicted values generally follow the trend of 
the actual data. The second plot shows predicted values against 
the true values, along with a diagonal line representing ideal 
prediction. Most points are located near this line, which reflects 
a reasonable level of accuracy without major deviations. 
Additionally, an error-bar plot of the residuals is presented to 
illustrate the distribution of prediction errors. The residuals 
remain centered around zero, indicating that the model does not 
exhibit systematic bias. The error bars represent the standard 
deviation of residuals within different predicted SoH ranges, 
showing how prediction errors are dispersed around zero across 
the operating range. 

 

 
 

 

 
Figure 2.   Model evaluation results using the Random Forest model: 
a) Predicted and measured SoH values across test samples; 

Model RMSE (%) R² Score MSE (%) 
MAE 
(%) 

Random 
Forest 

0.8441 0.9819 0.7125 0.5117 

GPR 
(Baseline) 

1.1397 0.9750 1.6407 0.8573 

XGBoost 2.8164 0.8116 7.9322 2.1068 

 

 

 



b) Scatter plot of predicted versus true SoH with the diagonal line; 
c) Error-bar plot of residuals showing the distribution of prediction errors 
around zero. Vertical axis expressed in %. 

 

D. Noise Robustness Evaluation 

To assess real-world applicability, we tested the Random 
Forest model under different types of artificial noise designed 
to mimic common sensor and measurement errors in battery 
management systems (BMS). We applied three kinds of noise 
to the EIS-based features, with each scaled to match the natural 
range of that feature in the training data: 

a) Gaussian noise – to imitate random fluctuations and 
electrical interference. 

b) Uniform noise – to represent broad, evenly spread 
measurement errors. 

c) Bias shift – a small, consistent offset applied to all 
measurements, like a sensor calibration drift. 

Unlike many studies where noise is only added during 
testing, here we also introduced these noise patterns during 
training. This “noise-augmented” approach, combined with a 
simple clipping step to remove extreme outliers, helped the 
model learn to handle imperfect data and stay accurate even 
under challenging conditions. Figure. 3.  illustrates the model’s 
performance (RMSE) under each noise scenario. Despite the 
severity of some perturbations, the error remained below 1.4% 
in all cases, with the lowest sensitivity observed for bias shift 
and Gaussian noise, and slightly higher errors under uniform 
noise. These results show that training the model with added 
noise makes it much more reliable than models trained only on 
clean data. This approach is well-suited for real-world battery 
systems, where sensor readings are often imperfect. 

 

E. Performance Analysis 

To further examine the prediction quality of the Random 
Forest model, a numerical comparison between the actual and 
predicted SoH values is presented in Table II. The predicted 
values closely follow the true SoH measurements across the test 
set, with minimal deviation. This direct side-by-side 
comparison highlights the model’s accuracy and its ability to 
generalize well without overfitting. The small residuals 

observed across most samples reinforce the consistency of the 
model's performance under standard test conditions. 

Table II. Actual and Predicted SoH Values 

Actual Predicted Residual 

90 90.01953 -0.01953 

82.61905 82.59437 0.02468 

95 95.01775 -0.01775 

100 100 0 

90 89.90917 0.090833 

80.71429 81.36577 -0.65148 

82.14286 83.96569 -1.82283 

 

Random Forest outperformed GPR for several reasons. 
First, it naturally handles noisy or incomplete data more 
effectively by combining the outputs of multiple decision trees 
and randomly selecting subsets of features. This makes it well 
suited for EIS measurements taken under non-ideal conditions. 
Second, it does not depend on choosing a specific mathematical 
function to describe the data, which in GPR can lead to reduced 
accuracy if the wrong choice is made. Third, Random Forest 
can capture complex, nonlinear relationships between the EIS 
features (F1–F7) and variables like temperature and state of 
charge (SoC) without requiring manual feature engineering. In 
our experiments, this led to lower RMSE and MAE and higher 
R² compared to the GPR baseline, in line with the benefits of 
our noise-augmented training strategy. 

V. CONCLUSION 

This study evaluated multiple machine learning models for 
estimating the State of Health (SoH) of second-life lithium-ion 
batteries using features derived from electrochemical 
impedance spectroscopy (EIS). Among the tested models—
including GPR and XGBoost—Random Forest consistently 
outperformed all others, achieving the lowest RMSE and MAE, 
the highest R², and showing no signs of overfitting. Visual and 
residual analyses confirmed its ability to closely track actual 
SoH values with minimal error. Beyond its strong prediction 
accuracy, Random Forest also proved efficient and stable, 
delivering results almost instantly and maintaining performance 
under varying input conditions. These qualities make it 
particularly suitable for integration into battery management 
systems, where both precision and rapid response are critical.  

Overall, the combination of EIS-based features with an 
ensemble learning approach like Random Forest provides a 
practical, robust, and scalable solution for real-world second-
life battery health monitoring. Future work will focus on 
extending this approach to larger, more diverse datasets and 
exploring hybrid or physics-informed models to further 
improve generalization and resilience under real-world 
operating conditions. 

   

 
Figure 3. Robustness of the proposed Random Forest model under 
different noise scenarios applied to EIS-derived features: Gaussian 
noise, uniform noise, and bias shift 
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