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Abstract— Accurate State of Health (SoH) estimation is
crucial for reusing retired lithium-ion batteries safely. Existing
methods lack robustness against real-world sensor noise and
disturbances. We propose a noise-augmented training method
with feature clipping to improve prediction reliability under
measurement imperfections. Our approach enhances model
resilience in industrial environments, where noise and calibration
drift degrade performance. Evaluations show Random Forest
Regression outperforms other models, achieving a 25% lower
RMSE (0.85% vs. 1.14%). This demonstrates its effectiveness for
practical second-life battery applications, balancing speed and
accuracy. The method’s noise-resistant design ensures reliable
SoH estimation, supporting sustainable battery reuse in energy
storage systems.
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I. INTRODUCTION

Lithium-ion batteries have become a cornerstone of today’s
energy landscape, powering everything from electric vehicles
(EVs) and portable electronics to large-scale renewable energy
storage systems. Their combination of high energy density,
long cycle life, and low self-discharge rate has made them the
preferred choice for both mobile and stationary applications [1].
With the rapid growth in demand for EVs and clean energy
technologies, the global lithium-ion battery market is projected
to surpass $180 billion by 2030, driven largely by their adoption
in transportation and grid storage [2]. At the same time, the
increasing number of EV batteries reaching the end of their
primary service life is creating a strong incentive for second-
life applications in stationary energy storage, offering both
environmental and economic benefits [3]. This shift supports a
more sustainable energy ecosystem but also raises new
challenges in battery assessment, safety, and lifecycle
management.
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Beyond transportation and consumer devices, lithium-ion
batteries are becoming essential for building reliable and
flexible energy systems. They make it easier to integrate
renewable sources like wind and solar into the grid, support
backup power solutions, and drive innovations such as
microgrids and smart homes [4]. Advances in battery
chemistry, cooling, and recycling are improving their lifespan
and sustainability [5], while their adaptability has expanded
their use to fields like aerospace, healthcare, and manufacturing
[6]. These trends highlight that the future of clean energy and
modern infrastructure will remain closely tied to the continued
development and deployment of lithium-ion battery
technology.

Reliable estimation of a battery's State of Health (SoH) is
critical for both primary and second-life applications, directly
influencing safety, performance, and lifecycle management.
SoH reflects the degradation level of a battery and is typically
defined as the ratio of the current capacity to the nominal
capacity. In electric vehicles and grid storage systems, incorrect
SoH prediction can lead to premature replacement,
underutilization, or, worse, catastrophic failures due to
undetected capacity loss or internal damage [7], [8]. Moreover,
real-time or near-real-time SoH monitoring is essential for
effective battery management systems (BMS), enabling smart
decision-making in charge/discharge control, thermal
regulation, and remaining useful life estimation [9], [10].

While traditional approaches such as incremental capacity
(IC) analysis, differential voltage analysis, and equivalent-
circuit modeling remain prevalent [11], they often depend on
precise laboratory conditions and may not generalize well to
diverse real-world aging patterns. A recent onboard health
estimation framework, for example, employs Electrochemical
Impedance Spectroscopy (EIS) deconvolved via the
Distribution of Relaxation Times (DRT) as input to an LSTM-
based model, achieving robust SoH predictions across varying
degradation ages and operating conditions with an average



RMSPE of approximately 1.69 percent [12]. Such methods
provide valuable insights but still face limitations, including
high computational cost, sensitivity to measurement noise, and
dependence on internal battery parameters that are rarely
available in practical systems. In contrast, data-driven
approaches based on machine learning and impedance
measurements—particularly EIS—have emerged as powerful
tools for SoH estimation, offering the potential for non-
invasive, accurate, and fast diagnostics under diverse
conditions [13]. improving their robustness, generalizability,
and seamless integration into real-world battery systems
remains an ongoing challenge.

Recent research has increasingly focused on hybrid
strategies that combine physics-based insights with data-driven
algorithms to overcome the limitations of traditional SoH
estimation methods. These methods combine the clarity of
electrochemical models with the flexibility of machine
learning, allowing accurate predictions even when the data is
incomplete or affected by noise [14], [15]. Furthermore,
advancements in sensor technology and embedded computing
have made it possible to deploy these methods directly within
battery management systems, reducing reliance on laboratory-
grade equipment [16]. Emerging trends, such as federated
learning and cloud-connected diagnostics, also promise to
enhance model generalization by pooling data from large,
diverse battery fleets without compromising privacy [17].
Together, these innovations are paving the way for SoH
estimation techniques that are not only more accurate but also
scalable and practical for real-world applications.

In response to the ongoing need for accurate and scalable
SoH estimation, this study investigates the effectiveness of
various machine learning models in predicting battery health
based on EIS features. A publicly available dataset—originally
introduced by Marco et al. [18]—was used, containing
impedance data collected under varying temperatures and state-
of-charge conditions. From this dataset, seven key frequency-
domain features were extracted to represent the shape and
dynamics of the EIS spectrum. Three machine learning models
—XGBoost, Random Forest, and GPR— were trained and
evaluated using consistent cross-validation settings. Among all
models, the Random Forest Regressor delivered the most
accurate predictions, with a notable reduction in RMSE
compared to the Gaussian Process Regression (GPR) baseline
reported in [19].

Building on this result, we turned our attention to making
the model reliable under conditions that closely resemble real-
world battery operation. To achieve this, we developed a
training approach that combines the predictive power of seven
EIS-derived features with targeted noise scenarios—Gaussian,
uniform, and calibration bias—introduced during learning.

While many previous EIS-based SoH estimation methods
are tested under clean laboratory conditions with minimal
measurement noise, real-world applications face electrical
interference, environmental fluctuations, and sensor drift that
can significantly reduce accuracy. Our noise-augmented
training, paired with a simple feature-clipping step, enables the
model to remain accurate despite such imperfections. By
addressing robustness alongside prediction performance, this

approach narrows the gap between controlled lab studies and
the noisy, variable conditions of practical second-life battery
use, offering a dependable and deployment-ready solution for
health monitoring.

The remainder of this paper is organized as follows. Section
II presents the modeling framework and methodology adopted
in this study. Section III describes the SoH estimation process
using three different machine learning approaches. Section IV
discusses the simulation results, including performance
evaluation under noise-perturbed conditions. Finally, Section V
summarizes the conclusions and outlines potential directions
for future work.

II.  MODELING AND METHODOLOGY

We used a publicly available dataset originally described by
Marco et al. [18]. The dataset contains Electrochemical
Impedance Spectroscopy (EIS) measurements collected from
second-life lithium-ion cells under varying temperatures and
states of charge (SoC). In total, the dataset comprises 375 EIS
test cases measured across multiple SoC and temperature
combinations. Measurements were taken at SoC levels of 5, 20,
50, 70, and 95%, and across a temperature range of 15, 25, and
35 °C. Seven specific features were extracted from each EIS
test in order to predict SoH. These features were selected based
on Pearson correlation analysis, which demonstrated a
significant numerical relationship between each feature and the
battery's state of health (SoH). These features correspond to
specific geometrical points on the Nyquist plot that reflect the
dynamic behavior of the battery under test. As shown in Fig. 1.
the selected points include:

— the highest frequency point (#:), which marks the starting
point of the EIS curve;

— the minimum real part (F2), typically corresponding to the
end of the semicircle;

— the lowest frequency point (F5), indicating the tail of the
impedance spectrum;

— the zero-crossing point (F), where the imaginary
component becomes zero;

— the imaginary peak (F5), representing the maximum
capacitive response;

— and two local minima, (Fs) and (F7), found between (F,
Fs) and (F5, F5), which characterize curve inflections in the
low- and mid-frequency ranges.

These geometrically derived EIS features offer a compact
yet informative representation of the impedance response,
capturing its shape without relying on explicit physical models.
In addition to these seven spectral features, temperature and
state of charge (SoC) were incorporated as supplementary
inputs, resulting in a total of nine variables for the machine
learning models. This approach enables dimensionality
reduction while preserving key diagnostic information,
facilitating robust and efficient SoH estimation across varying
condition.
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Figure 1.

III. ROBUST SOH ESTIMATION

Three machine learning models were applied in this work to
develop and evaluate the proposed state-of-health estimation:

A. GPR

In the study by Marco et al. [19], Gaussian Process
Regression (GPR) was adopted as the primary modeling
approach for battery State of Health (SoH) estimation using
features extracted from EIS measurements. GPR is a non-
parametric, kernel-based method that models the relationship
between inputs and outputs by defining a prior over functions
and updating it based on observed data. This probabilistic
nature allows GPR to not only make point predictions but also
quantify uncertainty, which is particularly valuable in
applications where measurement noise and operational
variability are significant. In Marco’s work, the training process
involved a combination of spectral feature engineering and
hyperparameter optimization to achieve a robust mapping
between the impedance-derived inputs and the battery health
metric. The model’s kernel hyperparameters—such as length-
scale, variance, and noise level—were optimized through a
cross-validation procedure to minimize prediction error.

B. XGBoost

XGBoost (Extreme Gradient Boosting) is a machine
learning algorithm that builds many small decision trees and
combines their results to make more accurate predictions. Each
new tree is created to correct the mistakes made by the previous
ones. The method includes built-in features like regularization
to control model complexity, efficient parallel processing, and
the ability to handle missing data. These capabilities make it
flexible for working with datasets that have nonlinear
relationships or moderate levels of noise.

In this work, we configured XGBoost by adjusting a few
key parameters. We set the number of trees, the maximum
depth for each tree, and the learning rate so the model would
improve steadily without overfitting. Regularization
parameters were tuned to prevent the model from memorizing
noise, and we used random subsampling of both data and

features for each tree to make the model more robust. Training
was monitored with a validation set, and stopped early when
performance stopped improving. These settings were refined
through several trial-and-error runs until we found a balance
between accuracy and training speed.

C. Random Forest

Random Forest (RF) is an ensemble learning method that
averages the predictions of many decision trees trained on
bootstrap samples of the data. At each split, trees consider only
a random subset of features, which decorrelates the trees and
reduces variance. This design makes RF effective at capturing
nonlinear relationships while remaining relatively stable in the
presence of noisy or partially redundant inputs—properties that
align well with impedance-derived feature spaces.

In this study, we flattened and transformed the dataset
introduced by Marco et al. [18] into a structured tabular format.
Each sample consists of seven impedance-derived features (real
and imaginary components at characteristic frequencies), along
with the state of charge (SoC), temperature, and the
corresponding State of Health (SoH). In total, the dataset
comprises 375 samples. Prior to model training, raw
measurements were smoothed using a centered rolling mean
(window = 21) to reduce high-frequency fluctuations, and any
remaining missing values were imputed using backward and
forward filling. The processed dataset was then randomly
divided into training and testing subsets using an 80/20 split,
resulting in 300 training samples and 75 test samples.

To find a balanced configuration, we tested multiple
variations of the model’s settings—such as the number of trees
and the depth of each tree—and selected the combination that
provided the most consistent performance across different parts
of the dataset. We also measured how quickly the model could
produce predictions, ensuring it would be practical for real-time
applications.

After training, we assessed the model using standard
accuracy metrics and visual inspections. The results showed
that its predictions followed the actual SoH values very closely,
with small and randomly distributed errors. We also looked at
which features the model considered most important, providing
insights into the aspects of EIS data that have the greatest
influence on battery health estimation. Finally, the trained
model and its preprocessing steps were saved, making it ready
for deployment or further testing in real-world battery
management systems.

Each model was trained using 10-fold cross-validation for
consistent and unbiased comparison. The dataset was randomly
partitioned into ten equally sized subsets. In each iteration, one
subset was held out as the validation set, while the remaining
nine subsets were used for training.

IV. EXPERIMENTAL RESULTS

Model performance was evaluated using four standard
regression metrics: Root Mean Square Error (RMSE), Mean
Square Error (MSE), Mean Absolute Error (MAE), and the
coefficient of determination (R?). RMSE was primarily used as
the benchmark metric for ranking models, given its sensitivity
to larger errors.



The implementation was carried out primarily in Python
using the scikit-learn and XGBoost libraries. All experiments
were executed on a standard personal computer without the use
of GPU acceleration.

A. Quantitative Comparison

Table I presents a comparative overview of the evaluated
models in terms of RMSE, MSE, MAE and R2 The Random
Forest model demonstrated the best overall performance,
achieving an RMSE of 0.85%, significantly outperforming the
baseline Gaussian Process Regression (GPR), which recorded
an RMSE of 1.14%.

Table 1. Comaprison of ML Models for SoH Prediction

Model | RMSE (%) | R®Score | MSE (%) “(’{,2;3
Random 0.8441 0.9819 0.7125 0.5117
Forest
GPR 1.1397 0.9750 1.6407 0.8573
(Baseline)
XGBoost 2.8164 08116 7.9322 2.1068

B. Execution Time Analysis

Training the Random Forest model with the selected
hyperparameters took approximately 27 seconds, which is
acceptable given the dataset size and cross-validation settings.
This was measured on a workstation with Intel 8-core CPU
(Intel64 Family 6 Model 142), 7.8 GB RAM, Windows 11,
running Python 3.13.1 with scikit-learn 1.6.1. Once trained, the
model produced predictions almost instantly, with an average
inference time of around 7.5 milliseconds enabling near real-
time prediction capability. These results suggest that Random
Forest achieves high predictive performance and can be used
effectively even on systems with limited computing power.

C. Visual Evaluation

To visually evaluate the Random Forest model’s predictive
behavior, three plots are provided. The first plot displays the
measured and predicted SoH values across all test observations,
showing that the predicted values generally follow the trend of
the actual data. The second plot shows predicted values against
the true values, along with a diagonal line representing ideal
prediction. Most points are located near this line, which reflects
a reasonable level of accuracy without major deviations.
Additionally, an error-bar plot of the residuals is presented to
illustrate the distribution of prediction errors. The residuals
remain centered around zero, indicating that the model does not
exhibit systematic bias. The error bars represent the standard
deviation of residuals within different predicted SoH ranges,
showing how prediction errors are dispersed around zero across
the operating range.
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Figure 2. Model evaluation results using the Random Forest model:
a) Predicted and measured SoH values across test samples;



b) Scatter plot of predicted versus true SoH with the diagonal line;
c) Error-bar plot of residuals showing the distribution of prediction errors
around zero. Vertical axis expressed in %.

D. Noise Robustness Evaluation

To assess real-world applicability, we tested the Random
Forest model under different types of artificial noise designed
to mimic common sensor and measurement errors in battery
management systems (BMS). We applied three kinds of noise
to the EIS-based features, with each scaled to match the natural
range of that feature in the training data:

a) Gaussian noise — to imitate random fluctuations and
electrical interference.

b) Uniform noise — to represent broad, evenly spread
measurement errors.

c) Bias shift — a small, consistent offset applied to all
measurements, like a sensor calibration drift.

Unlike many studies where noise is only added during
testing, here we also introduced these noise patterns during
training. This “noise-augmented” approach, combined with a
simple clipping step to remove extreme outliers, helped the
model learn to handle imperfect data and stay accurate even
under challenging conditions. Figure. 3. illustrates the model’s
performance (RMSE) under each noise scenario. Despite the
severity of some perturbations, the error remained below 1.4%
in all cases, with the lowest sensitivity observed for bias shift
and Gaussian noise, and slightly higher errors under uniform
noise. These results show that training the model with added
noise makes it much more reliable than models trained only on
clean data. This approach is well-suited for real-world battery
systems, where sensor readings are often imperfect.
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Figure 3. Robustness of the proposed Random Forest model under
different noise scenarios applied to EIS-derived features: Gaussian
noise, uniform noise, and bias shift

E. Performance Analysis

To further examine the prediction quality of the Random
Forest model, a numerical comparison between the actual and
predicted SoH values is presented in Table II. The predicted
values closely follow the true SoH measurements across the test
set, with minimal deviation. This direct side-by-side
comparison highlights the model’s accuracy and its ability to
generalize well without overfitting. The small residuals

observed across most samples reinforce the consistency of the
model's performance under standard test conditions.

Table II. Actual and Predicted SoH Values

Actual Predicted Residual
90 90.01953 -0.01953
82.61905 82.59437 0.02468
95 95.01775 -0.01775
100 100 0
90 89.90917 0.090833
80.71429 81.36577 -0.65148
82.14286 83.96569 -1.82283

Random Forest outperformed GPR for several reasons.
First, it naturally handles noisy or incomplete data more
effectively by combining the outputs of multiple decision trees
and randomly selecting subsets of features. This makes it well
suited for EIS measurements taken under non-ideal conditions.
Second, it does not depend on choosing a specific mathematical
function to describe the data, which in GPR can lead to reduced
accuracy if the wrong choice is made. Third, Random Forest
can capture complex, nonlinear relationships between the EIS
features (F1-F7) and variables like temperature and state of
charge (SoC) without requiring manual feature engineering. In
our experiments, this led to lower RMSE and MAE and higher
R? compared to the GPR baseline, in line with the benefits of
our noise-augmented training strategy.

V. CONCLUSION

This study evaluated multiple machine learning models for
estimating the State of Health (SoH) of second-life lithium-ion
batteries using features derived from electrochemical
impedance spectroscopy (EIS). Among the tested models—
including GPR and XGBoost—Random Forest consistently
outperformed all others, achieving the lowest RMSE and MAE,
the highest R?, and showing no signs of overfitting. Visual and
residual analyses confirmed its ability to closely track actual
SoH values with minimal error. Beyond its strong prediction
accuracy, Random Forest also proved efficient and stable,
delivering results almost instantly and maintaining performance
under varying input conditions. These qualities make it
particularly suitable for integration into battery management
systems, where both precision and rapid response are critical.

Overall, the combination of EIS-based features with an
ensemble learning approach like Random Forest provides a
practical, robust, and scalable solution for real-world second-
life battery health monitoring. Future work will focus on
extending this approach to larger, more diverse datasets and
exploring hybrid or physics-informed models to further
improve generalization and resilience under real-world
operating conditions.
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